svd | R Documentation |
The difference between svd
and fm.svd
is that fm.svd
allows a user-specified tol. svd
computes eigenvalues in machine
precision.
fm.svd(x, nu = min(n, p), nv = min(n, p), tol = 1e-08) ## S4 method for signature 'fm' svd(x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)
x |
a FlashR matrix |
nu |
the number of left singluar vectors to be computed. |
nv |
the number of right singluar vectors to be computed. |
tol |
Stopping criterion: the relative accuracy of the Ritz value is considered acceptable if its error is less than 'tol' times its estimated value. If this is set to zero then machine precision is used. |
Returns a list with three entries
d |
max(nu, nv) approximate singular values |
u |
nu approximate left singular vectors (only when right_only=FALSE) |
v |
nv approximate right singular vectors |
Da Zheng <dzheng5@jhu.edu>
mat <- fm.runif.matrix(1000, 100) res <- fm.svd(mat, nu=10, nv=0) res <- svd(mat, nu=10, nv=0)